skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Charpagne, MA"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. 316L and 304L stainless steels and a compositional gradient of both are fabricated using the same processing parameters via laser directed energy deposition additive manufacturing. In those alloys, the increase in chromium-to-nickel ratio is accompanied with grain refinement and formation of a high density of twin boundaries, i.e. sigma3 boundaries. By means of electron microscopy, crystallographic and thermodynamic calculations, we demonstrate that two mechanisms arising from the ferrite-to-austenite solidification mode are at the origin of twin boundary formation and grain refinement: 1) inter-variant boundaries emerging from the encounter of pairs of austenite grains formed from a common ferrite orientation with Kurdjumov-Sachs orientation relationship; 2) icosahedral short-range-ordering-induced (ISRO) nucleation of twin-related grains directly from the solidifying liquid. These findings define new routes to achieve grain boundary engineering in a single step in FeCrNi alloys, by tailoring the solidification pathway during the AM process, enabling the design of functionally graded materials with site-specific properties. 
    more » « less